skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Johnson, Benjamin D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Our understanding of the assembly timeline of the Milky Way has been transforming along with the dramatic increase in astrometric and spectroscopic data available over the past several years. Many substructures in chemo-dynamical space have been discovered and identified as the remnants of various galactic mergers. To investigate the timeline of these mergers, we select main-sequence turnoff and subgiant stars (MSTOs) from the H3 survey, finding members in seven metal-poor components of the halo: Gaia-Sausage/Enceladus (GSE), the Helmi Streams, Thamnos, Sequoia, Wukong/LMS-1, Arjuna, and I’itoi. We also select out a metal-poor in situ population to facilitate comparison to the evolution of the Milky Way itself at these early epochs. We fit individual isochrone ages to the MSTOs in each of these substructures and use the resulting age distributions to infer simple star formation histories (SFHs). For GSE, we resolve an extended SFH that truncates ≈10 Gyr ago, as well as a clear age–metallicity relation. From this age distribution and measured SFH we infer that GSE merged with the Milky Way at a time 9.5–10.2 Gyr ago, in agreement with previous estimates. We infer that the other mergers occurred at various times ranging from 9 to 13 Gyr ago, and that the metal-poor in situ Galaxy built up within only a few billion years. These results reinforce the emerging picture that both the disk and halo of the Milky Way experienced a rapid assembly. 
    more » « less
  2. Abstract We presentAugustus, a catalog of distance, extinction, and stellar parameter estimates for 170 million stars from 14 mag <r< 20 mag and with ∣b∣ > 10° drawing on a combination of optical to near-infrared photometry from Pan-STARRS, 2MASS, UKIDSS, and unWISE along with parallax measurements from Gaia DR2 and 3D dust extinction maps. After applying quality cuts, we find 125 million objects have “high-quality” posteriors with statistical distance uncertainties of ≲10% for objects with well-constrained stellar types. This is a substantial improvement over the distance estimates derived from Gaia parallaxes alone and in line with the recent results from Anders et al. We find the fits are able to reproduce the dereddened Gaia color–magnitude diagram accurately, which serves as a useful consistency check of our results. We show that we are able to detect large, kinematically coherent substructures in our data clearly relative to the input priors, including the Monoceros Ring and the Sagittarius Stream, attesting to the quality of the catalog. Our results are publicly available at doi:10.7910/DVN/WYMSXV. An accompanying interactive visualization can be found athttp://allsky.s3-website.us-east-2.amazonaws.com. 
    more » « less
  3. ABSTRACT We model the stellar abundances and ages of two disrupted dwarf galaxies in the Milky Way stellar halo: Gaia-Sausage Enceladus (GSE) and Wukong/LMS-1. Using a statistically robust likelihood function, we fit one-zone models of galactic chemical evolution with exponential infall histories to both systems, deriving e-folding time-scales of τin = 1.01 ± 0.13 Gyr for GSE and $$\tau _\text{in} = 3.08^{+3.19}_{-1.16}$$ Gyr for Wukong/LMS-1. GSE formed stars for $$\tau _\text{tot} = 5.40^{+0.32}_{-0.31}$$ Gyr, sustaining star formation for ∼1.5–2 Gyr after its first infall into the Milky Way ∼10 Gyr ago. Our fit suggests that star formation lasted for $$\tau _\text{tot} = 3.36^{+0.55}_{-0.47}$$ Gyr in Wukong/LMS-1, though our sample does not contain any age measurements. The differences in evolutionary parameters between the two are qualitatively consistent with trends with stellar mass M⋆ predicted by simulations and semi-analytic models of galaxy formation. Our inferred values of the outflow mass-loading factor reasonably match $$\eta \propto M_\star ^{-1/3}$$ as predicted by galactic wind models. Our fitting method is based only on Poisson sampling from an evolutionary track and requires no binning of the data. We demonstrate its accuracy by testing against mock data, showing that it accurately recovers the input model across a broad range of sample sizes (20 ≤ N ≤ 2000) and measurement uncertainties (0.01 ≤ σ[α/Fe], σ[Fe/H] ≤ 0.5; $$0.02 \le \sigma _{\log _{10}(\text{age})} \le 1$$). Due to the generic nature of our derivation, this likelihood function should be applicable to one-zone models of any parametrization and easily extensible to other astrophysical models which predict tracks in some observed space. 
    more » « less
  4. Abstract The Magellanic Stream (MS)—an enormous ribbon of gas spanning 140° of the southern sky trailing the Magellanic Clouds—has been exquisitely mapped in the five decades since its discovery. However, despite concerted efforts, no stellar counterpart to the MS has been conclusively identified. This stellar stream would reveal the distance and 6D kinematics of the MS, constraining its formation and the past orbital history of the Clouds. We have been conducting a spectroscopic survey of the most distant and luminous red giant stars in the Galactic outskirts. From this data set, we have discovered a prominent population of 13 stars matching the extreme angular momentum of the Clouds, spanning up to 100° along the MS at distances of 60–120 kpc. Furthermore, these kinematically selected stars lie along an [α/Fe]-deficient track in chemical space from −2.5 < [Fe/H] <− 0.5, consistent with their formation in the Clouds themselves. We identify these stars as high-confidence members of the Magellanic Stellar Stream. Half of these stars are metal-rich and closely follow the gaseous MS, whereas the other half are more scattered and metal-poor. We argue that the metal-rich stream is the recently formed tidal counterpart to the MS, and we speculate that the metal-poor population was thrown out of the SMC outskirts during an earlier interaction between the Clouds. The Magellanic Stellar Stream provides a strong set of constraints—distances, 6D kinematics, and birth locations—that will guide future simulations toward unveiling the detailed history of the Clouds. 
    more » « less
  5. Abstract One of the most common methods for inferring galaxy attenuation curves is via spectral energy distribution (SED) modeling, where the dust attenuation properties are modeled simultaneously with other galaxy physical properties. In this paper, we assess the ability of SED modeling to infer these dust attenuation curves from broadband photometry, and suggest a new flexible model that greatly improves the accuracy of attenuation curve derivations. To do this, we fit mock SEDs generated from the simba cosmological simulation with the prospector SED fitting code. We consider the impact of the commonly assumed uniform screen model and introduce a new nonuniform screen model parameterized by the fraction of unobscured stellar light. This nonuniform screen model allows for a nonzero fraction of stellar light to remain unattenuated, resulting in a more flexible attenuation curve shape by decoupling the shape of the UV attenuation curve from the optical attenuation curve. The ability to constrain the dust attenuation curve is significantly improved with the use of a nonuniform screen model, with the median offset in UV attenuation decreasing from −0.30 dex with a uniform screen model to −0.17 dex with the nonuniform screen model. With this increase in dust attenuation modeling accuracy, we also improve the star formation rates (SFRs) inferred with the nonuniform screen model, decreasing the SFR offset on average by 0.12 dex. We discuss the efficacy of this new model, focusing on caveats with modeling star-dust geometries and the constraining power of available SED observations. 
    more » « less
  6. Abstract Modern Galactic surveys have revealed an ancient merger that dominates the stellar halo of our galaxy (Gaia–Sausage–Enceladus, GSE). Using chemical abundances and kinematics from the H3 Survey, we identify 5559 halo stars from this merger in the radial range r Gal = 6–60kpc. We forward model the full selection function of H3 to infer the density profile of this accreted component of the stellar halo. We consider a general ellipsoid with principal axes allowed to rotate with respect to the galactocentric axes, coupled with a multiply broken power law. The best-fit model is a triaxial ellipsoid (axes ratios 10:8:7) tilted 25° above the Galactic plane toward the Sun and a doubly broken power law with breaking radii at 12 kpc and 28 kpc. The doubly broken power law resolves a long-standing dichotomy in literature values of the halo breaking radius, being at either ∼15 kpc or ∼30 kpc assuming a singly broken power law. N -body simulations suggest that the breaking radii are connected to apocenter pile-ups of stellar orbits, and so the observed double-break provides new insight into the initial conditions and evolution of the GSE merger. Furthermore, the tilt and triaxiality of the stellar halo could imply that a fraction of the underlying dark matter halo is also tilted and triaxial. This has important implications for dynamical mass modeling of the galaxy as well as direct dark matter detection experiments. 
    more » « less
  7. Abstract Accurate models of the star formation histories (SFHs) of recently quenched galaxies can provide constraints on when and how galaxies shut down their star formation. The recent development of nonparametric SFH models promises the flexibility required to make these measurements. However, model and prior choices significantly affect derived SFHs, particularly for post-starburst galaxies (PSBs), which have sharp changes in their recent SFH. In this paper, we create mock PSBs, then use the Prospector SED fitting software to test how well four different SFH models recover key properties. We find that a two-component parametric model performs well for our simple mock galaxies, but is sensitive to model mismatches. The fixed- and flexible-bin nonparametric models included in Prospector are able to rapidly quench a major burst of star formation, but systematically underestimate the post-burst age by up to 200 Myr. We develop a custom SFH model that allows for additional flexibility in the recent SFH. Our flexible nonparametric model is able to constrain post-burst ages with no significant offset and just ∼90 Myr of scatter. Our results suggest that while standard nonparametric models are able to recover first-order quantities of the SFH (mass, SFR, average age), accurately recovering higher-order quantities (burst fraction, quenching time) requires careful consideration of model flexibility. These mock recovery tests are a critical part of future SFH studies. Finally, we show that our new, public SFH model is able to accurately recover the properties of mock star-forming and quiescent galaxies and is suitable for broader use in the SED fitting community. https://github.com/bd-j/prospector 
    more » « less
  8. Abstract The majority of the Milky Way’s stellar halo consists of debris from our galaxy’s last major merger, the Gaia-Sausage-Enceladus (GSE). In the past few years, stars from the GSE have been kinematically and chemically studied in the inner 30 kpc of our galaxy. However, simulations predict that accreted debris could lie at greater distances, forming substructures in the outer halo. Here we derive metallicities and distances using Gaia DR3 XP spectra for an all-sky sample of luminous red giant stars, and map the outer halo with kinematics and metallicities out to 100 kpc. We obtain follow-up spectra of stars in two strong overdensities—including the previously identified outer Virgo Overdensity—and find them to be relatively metal rich and on predominantly retrograde orbits, matching predictions from simulations of the GSE merger. We argue that these are apocentric shells of GSE debris, forming 60–90 kpc counterparts to the 15–20 kpc shells that are known to dominate the inner stellar halo. Extending our search across the sky with literature radial velocities, we find evidence for a coherent stream of retrograde stars encircling the Milky Way from 50 to 100 kpc, in the same plane as the Sagittarius Stream but moving in the opposite direction. These are the first discoveries of distant and structured imprints from the GSE merger, cementing the picture of an inclined and retrograde collision that built up our galaxy’s stellar halo. 
    more » « less
  9. Abstract Recent observations of the stellar halo have uncovered the debris of an ancient merger, Gaia–Sausage–Enceladus (GSE), estimated to have occurred ≳8 Gyr ago. Follow-up studies have associated GSE with a large-scale tilt in the stellar halo that links two well-known stellar overdensities in diagonally opposing octants of the Galaxy (the Hercules–Aquila Cloud and Virgo Overdensity; HAC and VOD). In this paper, we study the plausibility of such unmixed merger debris persisting over several gigayears in the Galactic halo. We employ the simulated stellar halo from Naidu et al., which reproduces several key properties of the merger remnant, including the large-scale tilt. By integrating the orbits of these simulated stellar halo particles, we show that adoption of a spherical halo potential results in rapid phase mixing of the asymmetry. However, adopting a tilted halo potential preserves the initial asymmetry in the stellar halo for many gigayears. The asymmetry is preserved even when a realistic growing disk is added to the potential. These results suggest that HAC and VOD are long-lived structures that are associated with GSE and that the dark matter halo of the Galaxy is tilted with respect to the disk and aligned in the direction of HAC–VOD. Such halo–disk misalignment is common in modern cosmological simulations. Lastly, we study the relationship between the local and global stellar halo in light of a tilted global halo comprised of highly radial orbits. We find that the local halo offers a dynamically biased view of the global halo due to its displacement from the Galactic center. 
    more » « less
  10. Abstract We present NIRCam and NIRISS modules for DOLPHOT, a widely used crowded-field stellar photometry package. We describe details of the modules including pixel masking, astrometric alignment, star finding, photometry, catalog creation, and artificial star tests. We tested these modules using NIRCam and NIRISS images of M92 (a Milky Way globular cluster), Draco II (an ultrafaint dwarf galaxy), and Wolf–Lundmark–Mellote (a star-forming dwarf galaxy). DOLPHOT’s photometry is highly precise, and the color–magnitude diagrams are deeper and have better definition than anticipated during original program design in 2017. The primary systematic uncertainties in DOLPHOT’s photometry arise from mismatches in the model and observed point-spread functions (PSFs) and aperture corrections, each contributing ≲0.01 mag to the photometric error budget. Version 1.2 of WebbPSF models, which include charge diffusion and interpixel capacitance effects, significantly reduced PSF-related uncertainties. We also observed minor (≲0.05 mag) chip-to-chip variations in NIRCam’s zero-points, which will be addressed by the JWST flux calibration program. Globular cluster observations are crucial for photometric calibration. Temporal variations in the photometry are generally ≲0.01 mag, although rare large misalignment events can introduce errors up to 0.08 mag. We provide recommended DOLPHOT parameters, guidelines for photometric reduction, and advice for improved observing strategies. Our Early Release Science DOLPHOT data products are available on MAST, complemented by comprehensive online documentation and tutorials for using DOLPHOT with JWST imaging data. 
    more » « less